IER-161, BeRP Ball Reflected by Nickel Benchmark Evaluation

Benoît Richard, Jesson Hutchinson, Mark Smith-Nelson, Theresa Cutler, Avneet Sood

XCP-3, NEN-2

March the 26th, 2014

LA-UR-14-21929

Table of Contents

- Introduction
- Presentation
- **Experimental Techniques**
- Modelization
- Comparison Experiment-Simulation
- Conclusion & Future Work

An appropriate tool to improve criticality safety assessments ...

- Subcritical neutron noise measurement techniques can infer the multiplication and the reactivity of a nuclear assembly
- Easy way to provide a continuous monitoring during operations
- Validation of the computational schemes used in criticality safety assessment
 - Nuclear data
 - Codes and Methods

... Need for new subcritical benchmarks in the ICSBEP Database

1 Introduction

Conclusion & Future Work

Provide a benchmark evaluation based on a set of subcritical experiments involving the Berp ball reflected by nickel shells

- Reactivity range: from $k_{eff} = 0.79$ to $k_{eff} = 0.92$
- 7 configurations: from the bare Berp to the 3" reflected case
- Experiments performed in September 2012 at NCERC

Conclusion & Future Work

- 4.5 kg, 3.0" diameter
- Encapsulated in a SS 304 cladding
- Machined in 1980

- Previous experiments:
 - Be reflected critical experiment (PU-MET-FAST-038)
 - HEU reflected "Rocky Flats Shells" critical experiment (MIX-MET-FAST-013)
 - CSDNA subcritical noise measurements with polyethylene reflection (SUB-PU-MET-FAST-001) and nickel reflection

- 6 layers, each being 0.5" thick → maximum thickness: 3.0"
- Each layer is composed of 2 combined shells

- Must be deduced from well-known and fieldproven techniques
- Fundamental quantities having nevertheless a practical meaning
- Accessible and reliable uncertainty determination
- Must enable the discrimination without any ambiguity of each studied configuration

Selected quantities

- Directly deduced from the Feynman histogram:
 - R₁: singles asymptotic counting rate
 - R₂: doubles asymptotic counting rate
- M₁: leakage multiplication deduced from the Hage-Cifarelli formalism (based upon Feynman methodology)

Experimental Technique

The Hage Cifarelli technique

- List mode data acquisition by two **NPODs**
- Construction of the Feynman histograms to deduce R_1 , R_2 and R_3
- Assumption: the (α, n) source strength is negligible in front of the spontaneaous fissions source
- Knowing the distribution p(v) for both source and induced fissions
- 3 equations $R_i = f(M_1, \epsilon, F_s)$
- Solve for M_1 , ϵ and F_s

Steps	Experiment	Simulation	
Source setting	Berp Ball	Fission source strength computed with MISC	
List mode data acquisition	2 NPODs	Multiplication patch with MCNP5 → detection events in He3 tubes	
Solving Hage Cifarelli equations	$\begin{array}{c} \varepsilon \text{ deduced from} \\ \text{calibration experiments} \\ \rightarrow \left(M_1, F_s\right) \end{array}$	$\begin{array}{c} F_s \text{ known} \\ \text{(input parameter)} \\ \rightarrow (M_1, \varepsilon) \end{array}$	

roduction Presentation 3 Experimental Techniques Modelization Comparison Experiment-Simulation Conclusion & Future Work

Sensitivity/Uncertainty Study - Experimental Data

Illustration on the 3.0" thick reflected case

23 independent uncertainties on experimental data divided in 4 broad categories

	R ₁	R ₂	Mı
Combined uncertainties	2.02 %	2.79 %	0.72 %

10/17

oduction Presentation Experimental Techniques 4 Modelization Comparison Experiment-Simulation Conclusion & Future Work

Benchmark Specifications for the NPODs

11/17

Geometry:

- Each piece is modeled
- Dimensions taken from engineering drawings or measured directly
- He3 tubes features:
 - Taken from manufacturer specifications
 - Lack of information on composition, pressure, active region
 - Work in progress: calibration experiments with calibrated neutron sources

4 Modelization

Models for the Berp Ball Assembly

Detailed model

As close as possible to engineering specifications

Simplified model

- Simplified geometry
- No impurities

Comparison Experiment-Simulation on $R_{\scriptscriptstyle 1}$

Comparison Experiment-Simulation on R₂

14/17

Comparison Experiment-Simulation on $M_{\mbox{\scriptsize l}}$

15 / 17

Comparison Experiment-Simulation

Conclusion & Future Work

- Criteria is met to make this benchmark acceptable
- Biases on R_1 and R_2 due to some missing information on He3 tubes
 - Pursue efforts with calibrated neutron sources
 - Investigations to find related specifications
- Uncertainty reduction by considering correlations effects
- Integration of a detailed model for the SNAP
- Study of the response given by the Gamma detector

Acknowledgments

This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the NNSA for the US DOE

